All

What Is a Self-Healing Software and What Are the Main Principles?

date:  Jul 02 2021
reading time: 10min
Author

Bisera Stankovska

When humans are hurt, their bodies recover on their own. What if technology could do the same? What if we told you it can? 

Companies are racing to build self-healing systems, which have the potential to enhance quality, save costs, and increase consumer confidence. For instance, IBM is experimenting with self-configuring, self-protecting, and self-healing devices precisely because of this.

Table of Contents

What Is A Self-Healing System?

A self-healing software may detect malfunctions in its operation and adjust itself without human involvement, returning itself to a more functional condition. 

Self-healing applications work based on the following mechanisms:

  1. Fault Detection: The system constantly watches for unusual behavior, spotting when something goes awry. This surveillance encompasses the entire system, ensuring no anomalies escape detection.
  2. Fault Isolation: Once unusual behavior has been detected, pinpointing its root cause is the next crucial step. The fault isolation mechanism does exactly this — it identifies the origin or trigger of the error.
  3. Fault Recovery: After identifying the fault’s source, the most integral component of a self-healing system comes into play — the recovery mechanism. Here, the software autonomously takes corrective measures. It’s not just about fixing the problem but rather, the objective is to restore normal operations as swiftly as possible.

Self-healing systems are divided into three tiers, each with its own size and resource requirements:

Application Level

Problems are often noted in an ‘exceptions log’ for future investigation. The majority of issues are small and may be overlooked. Serious issues may necessitate the application’s termination (for example, an inability to connect to a database that has been taken offline).

Self-healing apps, on the other hand, include design aspects that help fix issues. Applications that use Akka, for example, organize elements in a hierarchy and allocate an actor’s issues to its supervisor. Many of these tools and frameworks aid apps that are designed to self-heal.

System Level

System-level self-healing, unlike application-level self-healing, is independent of a programming language or individual components. Rather, regardless of their underlying components, they may be generalized and used to any services and application.

Process failures (typically addressed by redeploying or restarting) and response time difficulties are the most prevalent system-level faults (often resolved by scaling and descaling). Self-healing systems monitor the health of various components and try repairs (such as redeploying) to restore them to their ideal states.

Hardware Level

Self-healing at the hardware level redeploys services from an unstable node to a healthy one. It also performs health inspections on various components. Existing hardware-level solutions are primarily system-level solutions since real hardware-level self-healing (for example, a computer that can heal memory problems or repair a broken hard drive) does not exist.

Types of Self-Healing Processes: Reactive vs. Preventive

In terms of self-healing, we can talk about reactive and preventive healing: 

Reactive Self-Healing

The healing that occurs in reaction to a mistake is known as reactive healing, and it is already in use. Reactive healing, for example, involves redeploying an application to a new physical node in reaction to an error, avoiding downtime.

The amount of danger a system can endure determines the level of reactive healing that is desirable. If a system relies on a single data center, the chances of the entire data center losing power and all nodes failing are so remote that creating a system to respond to this possibility is both useless and costly. However, if the system is important, it may make sense to build it to recover automatically in the case of a failure.

Preventative Self-Healing

In this type of scenario, errors are avoided proactively. Take, for example, using real-time data to proactively prevent processing time problems. To monitor the health of the service and make better use of resources, you issue an HTTP request. You build the system to scale if it takes more than 500 milliseconds to react, and you design the system to descale if it takes fewer than 100 milliseconds to respond.

However, if reaction times fluctuate often, employing real-time data might be problematic since the system will continually scale and descale (this can use a lot of resources in rigid architecture, and a smaller amount of resources in a micro-services architecture).

Three Principles of Self-Healing Systems

  1. Understand your system. Naturally, if you have a thorough understanding of your system, you’ll be better equipped to predict where an issue will arise and how you’ll respond. What are the most prevalent scenarios? What is the severity of any mistakes that may occur?
  2. Build for prevention. Automation, distributed storage, computation, and analytics make preventative measures simple and cost-effective. Errors may be avoided if you take a proactive, preventive attitude.
  3. Make things simple for the people involved. Self-healing systems decrease your team’s maintenance workload. Even when faults or potential errors necessitate human intervention, make the process as simple and straightforward as possible. Your employees will be grateful. 

Five-Point Roadmap for Self-Healing Systems

  1. Consider immutable infrastructure as code     
  2. Automate testing for efficient codebase
  3. Install comprehensive monitoring systems
  4. Incorporate cutting-edge smart alerts, triggers, and predictive analytics into your strategy.
  5. Consider how the system may improve self-learning

Benefits of Self-Healing Software

Among many other, these are the tangible benefits self-healing apps bring: 

  • Reduced Downtime: Self-healing applications are designed to detect, diagnose, and resolve issues without human intervention. This significantly reduces downtime and boosts performance, allowing businesses to run their operations smoothly. 
  • Innovative User Experience: With less interruption due to system failures, users enjoy a more seamless and convenient experience, particularly vital in mission-critical applications.
  • Emphasis on Continuous Improvement: The implementation of self-healing software is not a one-off process. Instead, it offers an opportunity for continuous learning, improvement, and betterment of the self-healing mechanisms, ensuring a resilient and robust system.
  • Potential for Automation: Self-healing applications embrace automation, aiming to create more autonomous, self-sustaining systems. This, in turn, reduces the necessity for human intervention, minimizing potential human error and boosting efficiency.
  • Resilience to Failures: With the capacity to plan for potential failure, self-healing software can effectively detect, respond, and recover from these failures automatically, securing the system’s integrity.
  • Influence of AI and Machine Learning: The impact of advanced technologies like AI and machine learning are significantly enriching self-healing applications, taking them to new heights of efficiency and effectiveness.

Self-Healing Systems: Key Takeaways

Self-healing systems and applications (or, better yet, systems and apps that automatically detect and avoid mistakes) can improve quality, cut costs, and increase consumer trust. Even the greatest systems require human interaction, but they may be designed to be light-touch and simple for the human to do. It might as well be that self-healing code is the future of software.

While the benefits of self-healing software are impressive, you must be aware that implementing these advanced systems is not without its challenges. But SnapStack can help! 

Need help with self-healing software development?

Let SnapStack assist you.

GET IN TOUCH

Self-Healing Software FAQs

1. How do you build a self-healing system?

To build a self-healing system, you must anticipate potential failures and develop automated error detection and correction capabilities. This allows the software to respond and recover autonomously. Comprehensive stress and integration testing are essential, followed by constant monitoring post-deployment. This dynamic process fosters continuous improvement, leading to an increasingly robust system.

Read more on our blog

Discover similar posts

IoT In Healthcare

IoT in Healthcare: What It Is, How It's Used, Its Importance & Vulnerabilities

IoT in healthcare is already transforming the sector, and the future seems promising.  From wearable fitness trackers to sophisticated smart implants, applications of IoT are changing the way healthcare is delivered. Read on to explore the groundbreaking impact.

What is IoT in Healthcare? 

IoT in healthcare is a term that refers to a network of connected devices that collect and exchange data to improve patient outcomes. These IoT devices range from wearable health monitors and smart thermometers to advanced implantable devices and remote patient monitoring systems.

Why is IoT Important in Healthcare? 

IoT is soon to become an indispensable part of modern healthcare as it primarily focuses on improving the efficiency and quality of patient care. IoT devices in healthcare collect and transmit real-time health data to healthcare providers. This information can be used for a variety of purposes, from early diagnosis and personalized treatment plans to continuous monitoring of patient conditions minus the need for invasive procedures.  

For example, wearable medical devices within the IoT framework enable Remote Patient Monitoring (RPM). These devices can monitor patients for different medical conditions right from their homes, allowing for timely interventions when needed without frequent hospital visits. This is paramount for chronic disease management, postoperative care, and elderly patients. 

Backed by IoT devices, patients can recover at home under medical supervision via remote monitoring, significantly reducing hospital readmissions. In turn, This lowers healthcare costs and improves patient comfort and satisfaction. Since IoT also supports data collection, it can lead to better clinical decision-making and operational efficiency for healthcare organizations. It’s a win-win. 

What’s more, the integration of IoT with blockchain technology further improves security and privacy. Platforms like BurstIQ facilitate the sharing and usage of medical data securely. Using blockchain, healthcare providers can share sensitive information reliably and with ease. This helps them streamline operations while guaranteeing all involved parties have accurate and up-to-date data.

How Is IoT Used in Healthcare?

With more and more medical practitioners and hospitals adopting IoT, we are witnessing a new and improved healthcare system. How? Here are just some of the applications of IoT within the sector:

ApplicationDescription
Remote Patient MonitoringCollects real-time health data from wearables or sensors for remote monitoring of patients. This remote patient monitoring can be particularly useful for patients who may not have easy access to healthcare facilities, and it can even recommend treatments or generate alerts based on the information gathered. 
Smart Medical DevicesIoT-enabled devices aid in managing chronic conditions by automatically collecting and transmitting data. 
Asset Tracking and ManagementTracks the location and status of medical equipment to ensure availability and reduce search time.
Supply Chain ManagementMonitors inventory levels and tracks movement of medical supplies and pharmaceuticals.
Hospital Operations OptimizationOptimizes hospital operations such as patient flow and scheduling, and monitors environmental conditions.
TelemedicineIoT devices enable telemedicine services, allowing patients to consult with doctors remotely, which can be especially useful for patients who live in remote areas or have mobility problems. 
Patient Engagement and Behavior MonitoringEncourages patient engagement and monitors behavior patterns for personalized feedback.

Benefits of IoT in Healthcare 

  • Improved Patient Monitoring: Continuous tracking of vital signs and health metrics through wearables and smart devices provides real-time data, allowing for timely interventions and better disease management.
  • Remote Patient Care: IoT devices facilitate telemedicine and remote consultations, reducing the need for hospital visits and enabling healthcare access in underserved or rural areas.
  • Operational Efficiency: Automation of routine tasks, such as inventory management and patient flow tracking, improves operational workflows and reduces the administrative burden on healthcare professionals.
  • Personalized Treatment: Data collected from IoT devices can be analyzed to tailor treatments to individual needs, improving patient outcomes and satisfaction.
  • Cost Reduction: By preventing unnecessary hospital visits and optimizing resource usage, IoT technology helps to significantly cut down healthcare costs for providers and patients alike.
  • Data-Driven Insights: The wealth of data generated by IoT devices can be analyzed to uncover patterns and insights, leading to better decision-making and continuous improvement in healthcare delivery.
  • Improved Drug Management: IoT-enabled smart cabinets and inventory systems ensure the accurate tracking and automatic reordering of medications, reducing errors and enhancing patient safety.
  • Health and Wellness Promotion: IoT devices encourage patients to engage with their own health, using fitness trackers and health monitoring applications to promote a proactive approach to wellness.

IoT Vulnerabilities in Healthcare 

While IoT brings forth numerous benefits in healthcare, it also introduces significant vulnerabilities that we must address. One of the primary concerns involves the security of patient data. Connected medical devices often transmit sensitive information across networks, making them potential cyber-attack targets.

Additionally, many healthcare IoT devices do not feature robust security measures. This lack of security can encompass insufficient encryption, default passwords that users rarely change, and outdated software. Such weaknesses not only jeopardize patient data but can also threaten the functionality of critical medical devices.

Moreover, the complexity of interconnected systems can introduce vulnerabilities. The integration of multiple devices from different manufacturers into a single network can lead to inconsistencies in security protocols, creating gaps that attackers might exploit.

Addressing these vulnerabilities requires a multi-faceted approach: enforcing stringent security measures, regular updates and patches, and comprehensive training for healthcare professionals on best practices in IoT security.

IoT in Healthcare: Key Takeaways 

Healthcare providers should seize the opportunities presented by IoT and blockchain to transform patient care and operational processes. The journey toward adopting these technologies begins with a strategic approach to implementation and a commitment to continuous improvement. 


[ecta id='22']

Read More
applications of iot

Five Applications of IoT That Will Convince You Of Its Potential to Change the Way Business Is Done

Envision a world where devices around you interact with each other, exchange data, learn from patterns, and make smart decisions autonomously. You might think this scene belongs to a futuristic sci-fi movie, yet, what you're imagining is today's reality. we live in the Internet of Things (IoT) era, and the applications of IoT are far-reaching. This new technology has a transformative impact across industries adding value to businesses and lives. 

What Is IoT and Why Is It so Popular?

IoT is an advanced integration of computer-based systems, digital, and mechanical machines or objects, people, or animals using unique identifiers (UIDs). They can swiftly transfer data over a network without human intervention, either human-to-human or human-to-computer.

This technology is so impressive that, according to predictions, there will be 75.44 billion IoT devices by 2025. 

But why is it mushrooming in popularity?  

We could go into detail about how the IoT appreciation comes from its ability to enable real-time monitoring, empowering businesses to respond to live updates instantly. This results in efficient operations and improved decision-making. Moreover, the data acquired from IoT can unearth patterns and new insights, leading to innovation and better customer relationships. 

However, the simple answer is: IoT's popularity is due to its transformative power to turn basic devices into intelligent ones. The applications of IoT that we’re about to discuss are just proof of this. 

IoT in Security 

With its ability to connect devices and systems, IoT empowers security frameworks in unforeseen ways. From automated surveillance systems and biometric authentication to intelligent threat detection and response, IoT is recalibrating our understanding of security fundamentals. 

Consider a practical scenario — IoT lets you connect your home security system to your mobile device. Consequently, you receive instant alerts of any suspicious activity, regardless of your location worldwide. Coupled with AI-powered threat prediction systems, this creates an ironclad defensive network that recognizes and combats security threats like never before.

However, it's crucial to acknowledge that increased connectivity may bring potential vulnerability. If not properly supervised, the heightened network exposure could invite misuse, so cybersecurity measures become more critical than ever in an IoT-enabled world. 

IoT in Healthcare

IoT devices, such as wearable medical gadgets, remote patient monitoring systems, and smart hospital equipment, are transforming patient care. These IoT applications can continually monitor vital signs, sugar levels, and other critical health metrics, sharing this data over a secure blockchain network. For example, diabetes patients can manage their condition better using IoT devices, with the data securely stored and analyzed by healthcare providers for timely interventions.

One compelling example is the integration of IoT and blockchain for remote patient monitoring (RPM). Patients can send real-time health data directly to their clinicians using IoT-enabled wearables. Blockchain ensures data remains secure and tamper-proof, addressing significant data privacy and security concerns in the healthcare sector. Additionally, IoT in healthcare aids digital clinical trials, with blockchain securely and transparently recruiting and tracking participants, ensuring the integrity of the collected data.

IoT in Manufacturing 

The manufacturing sector is experiencing a revolution with the integration of IoT. By connecting machines, devices, and systems, IoT enables real-time monitoring, predictive maintenance, and enhanced operational efficiency. 

One notable application is predictive maintenance, where IoT sensors monitor machinery conditions and predict potential failures before they occur. This proactive approach minimizes downtime and extends equipment lifespan, ultimately saving costs. 

Smart factories are also leveraging IoT to create more efficient and flexible production processes. For example, connected devices can communicate seamlessly, allowing for quicker adjustments to production lines and reducing waste. This level of automation and precision leads to higher product quality and consistency. 

Moreover, IoT in manufacturing facilitates better supply chain management. Real-time data tracking ensures transparency and accountability, providing manufacturers with insights into inventory levels, shipment status, and production bottlenecks. This visibility empowers manufacturers to make informed decisions and respond swiftly to market demands. 

Companies like Siemens and General Electric are already implementing IoT solutions to optimize their manufacturing processes, setting a precedent for the industry.

IoT in Retail 

By embedding IoT sensors in retail locations, stores can track customer behavior, manage inventory in real time, and ensure seamless shopping experiences. Retailers can use smart shelves that automatically notify staff when stock is low or utilize smart mirrors that allow customers to virtually try on clothes, transforming the shopping experience. 

An example of this is Amazon Go stores, which use IoT to enable a checkout-free shopping experience. Shoppers simply walk out with their items, and sensors track what they've taken. The technology then charges their Amazon accounts accordingly, enhancing customer convenience and reducing the need for cashiers. 

Moreover, IoT enables personalized marketing by collecting and analyzing data on customer preferences and shopping habits. This data can be used to tailor offers and promotions in real time, improving customer engagement and satisfaction.

IoT in Customer Service 

Imagine a world where customer service is not just reactive but predictive. With the advent of IoT, this is closer to reality than ever. IoT devices can monitor product usage and performance in real time, providing valuable insights into potential issues before they become real problems.  

For instance, smart home devices like thermostats and appliances can send alerts when maintenance is required, significantly improving customer satisfaction. Companies nowadays rely on IoT to improve their customer service, offering preemptive support that keeps their customers happy and loyal. 

This means that businesses can transform customer service from a necessary cost center into a competitive differentiator, setting themselves apart in an increasingly crowded marketplace.

Applications of IoT: Key Takeaways

It’s clear that the applications of IoT extend far beyond what we once imagined possible. From security and healthcare to manufacturing, retail, and customer service, IoT is reshaping industries and enriching our day-to-day experiences. The era of smart, interconnected devices is not just a vision for the future, it’s happening right now. 

[ecta id='22']

Read More

Top Seven Machine Learning Applications in 2024

Robots have not yet taken over the world, despite what the sci-fi pop culture of the late 20th century taught us. While all the claims made have not come true, machine learning is now present in almost all spheres of society. In many different industries, computers and AI systems are becoming proficient in a wide range of tasks — the seven machine learning applications we covered in this article are just the tip of the iceberg. 

Top Seven Applications for Machine Learning

Among many applications, machine learning has proven beneficial in: 

Diagnosing Diseases

Finding and diagnosing diseases that are typically difficult to diagnose is one of the main applications of machine learning in healthcare. Typical examples include genetic diseases and a variety of cancers that are difficult to detect in their early stages.

For instance, the now-defunct IBM Watson Genomics project offered a very good example of how cognitive computing and genome-based tumor sequencing can result in a much quicker diagnosis. Similar to this, Berg, a well-known biopharmaceutical company, has already used machine learning to create treatments for a variety of conditions, including oncology.

The PreDicT program from P1Vital, which stands for Predicting Response to Depression Treatment, is another excellent illustration of machine learning applications in the healthcare industry.

Image Recognition

Image recognition is a common practice. Have you noticed the automatic scene and facial recognition feature in the gallery app on your smartphone? Machine learning was used to accomplish that. The same is true for social media functions like auto-friend tagging. 

Consider Facebook’s DeepFace technology, which makes recommendations for friends to be tagged in images. Modern secret surveillance systems used by some governments around the world rely on machine learning-assisted image recognition as well.

Machine learning-based image recognition has uses in the healthcare industry as well. Missing even a small detail during many treatment procedures could have disastrous effects. Image detection can be used in scans and X-ray images to find even the smallest differences between two points. This method is especially beneficial for precisely tracking the development of a virus infection or the spread of a tumor.

Autonomous Vehicles

Regardless of the circumstance, AI is anticipated to outperform a human driver in autonomous vehicles. Machine learning algorithms are useful in this situation as they enable autonomous vehicles to make decisions instantly.

The onboard computer of self-driving cars like the Tesla Model S or Ford F-150 uses machine learning to process data input from a variety of sensors. This is to guarantee that the ADAS can interpret the environment around the vehicle safely and accurately. This data stream is used by the system to regulate the direction and speed of the vehicle. The data is also processed for other crucial tasks like object detection and tracking, perception, and forecasting.

Detecting Online Fraud

Machine learning is becoming more and more effective at protecting our online transactions and spotting fraud. It works particularly well at spotting fraudulent activity involving the use of phishing, fake accounts, and IDs.

To suggest risk rules, machine learning algorithms are trained on historical data for fraud detection. These rules can be used to prevent users from taking specific actions that have been flagged as suspicious, such as unauthorized logins, potential identity theft, fraudulent transactions, and so forth.

Data scientists typically provide a massive amount of records of previous fraud and forgeries to the machine learning model. To minimize false positives, they also flag non-fraud cases. The rule suggestions are typically more accurate with more data to work with.

Product Recommendations

Prime examples of machine learning applications in business are product recommendations on e-commerce sites and entertainment platforms. The "recommender systems" that produce and distribute these recommendations use machine learning algorithms to divide up the customer base according to user information and behavioral trends. The browsing history, likes, shares, and other user actions are used to gather user information and behavioral patterns.

Intelligent Virtual Assistant (IVA)

IVAs are computer-based systems that use machine learning to comprehend natural language, or human language, and respond appropriately. Each question is presented with a multiple-choice selection of responses by these clever AI assistants. They can decipher user intent from the free text as well.

IVAs, also known as Virtual Customer Assistants, are being used more and more in automated customer support. This enables users to express to the machine even very specific concerns in the same way they would to a human.

IVAs should be understood to be distinct from chatbots. They are much more intelligent and able to comprehend spoken language. In contrast, the majority of chatbots engage users by providing straightforward yes/no response options.

Now that no-code products are more prevalent, you can create IVAs in as little as 15 minutes. 

Trading

The use of machine learning in trading stocks and cryptocurrencies is also expanding. The internal calculations and analyses are performed by sophisticated machine learning algorithms. The data produced aids traders in making wise choices.

More specifically, machine learning is useful for identifying signals in alternative and financial data. The development and backtesting of systematic strategies can then be done using these signals.

What Does the Future Hold for Machine Learning Applications?

Applications of machine learning are becoming prevalent in many facets of our society. Much more than what we talked about above, sentiment analysis, data collection and classification in cosmology, marine life studies, engineering, military intelligence, and even digital art are some additional common applications. 

Every day, as artificial intelligence expands, more technological advancements become possible. Given the importance and relevance of this technology, it makes sense for you to educate yourself about it — and make good use of ML for your businesses. 

[ecta id='15']

Read More

Contact

    Copyrights © 2023 Snapstack

    Scroll to Top