All Blockchain

Real-World Examples of Blockchain in Action & The Benefits It Brings to Different Industries

date:  May 07 2024
reading time: 10min
Author

Bisera Stankovska

The versatility and potential of blockchain is making high-profile corporations, start-ups, and governments rely on its power. Nowadays, we can find blockchain use cases in diverse industries and sectors. It’s time we looked into its practical uses, exploring how it’s empowering businesses and institutions. After we discuss the benefits, you will ask yourself why you haven’t invested in it before. 

Table of Contents

Examples of Blockchain Usage Within Supply Chain Management

More and more companies are realizing the potential of blockchain, including: 

  • Walmart and IBM: This industry giant partnered with IBM to leverage blockchain for tracking the origin of food products like mangoes.  This system allows Walmart to trace mangoes back to specific farms within minutes, ensuring authenticity and facilitating faster and more targeted recalls in case of contamination concerns. 
  • Everledger for Diamonds: This company relies on blockchain to track diamonds throughout the entire supply chain, from mine to retail stores. Their system verifies the origin, authenticity, and ethical sourcing of diamonds, providing consumers with greater confidence and transparency when purchasing.
  • Provenance for Fashion: This organization uses blockchain to track the origin of materials used in clothing production. Consumers can scan a garment tag to access information about the source of materials, labor practices, and environmental impact, promoting ethical and sustainable fashion choices.
  • Coda Coffee: Using the power of blockchain, the company allows its customers to track the journey of coffee beans, ensuring fair compensation for farmers and providing consumers with transparency about the origin and ethical sourcing of their coffee. 

Benefits of Blockchain In Supply Chain Management

The benefits of blockchain in supply chain management extend beyond just tracking origin, as it also enables:

  • Boosted visibility. Blockchain provides real-time data on the location, condition, and movement of goods. This helps stakeholders share the data securely in the supply chain, improving visibility and facilitating proactive decision-making.
  • Reduced food waste. Improved tracking and transparency can help identify inefficiencies and bottlenecks in the food supply chain, leading to reduced food waste and improved resource management. 
  • Sustainable practices. Blockchain is all about transparency, which helps consumers make informed decisions about the products they buy. With 62% of people claiming they  “always or often” pick products to purchase because they are sustainable, every business nowadays wants to embrace sustainable practices.

Examples of Blockchain Usage Within the Finances and Banking Industries

The finance and banking industries haven’t been left behind from the blockchain revolution, with tens of companies adopting blockchain, including: 

  • RippleNet: This blockchain-based network facilitates secure and instant international money transfers. Financial institutions using RippleNet can settle payments in a matter of seconds, eliminating the delays and high fees associated with traditional methods.
  • Circle and USDC: Circle, a digital currency company, issued a stablecoin called USDC, which is pegged to the US dollar. This blockchain-based digital dollar allows for faster and cheaper international settlements because its value is tied to a stable asset.
  • Moeda Seeds: This Brazilian FinTech company utilizes blockchain to provide financial services to unbanked populations. Moeda Seeds allows users to store and transfer money securely using their smartphones, even without a traditional bank account. This promotes financial inclusion and empowers individuals who were previously excluded from the formal financial system.
  • AAVE: This decentralized lending platform operates on the Ethereum blockchain. AAVE allows users to borrow and lend cryptocurrencies in a peer-to-peer fashion, eliminating the need for traditional financial intermediaries and potentially offering more competitive interest rates.
  • Barclays: The firm is using blockchain-based smart contracts to automate contract execution, reducing the need for intermediaries, and speeding up processes.

Benefits of Blockchain in Finances

The financial sector is undergoing a significant transformation, and blockchain technology is at the forefront of this revolution. While cryptocurrencies may be the most well-known application of blockchain, its potential goes far beyond digital money: 

  • Reduces the risk of fraud and error compared to traditional systems. Transactions on a blockchain are permanently recorded and cryptographically secured, making them tamper-proof and auditable. 
  • Eliminates the need for intermediaries, directly minimizing risk. In a blockchain network, trust is established through cryptography and distributed consensus mechanisms. 
  • Allows near-instantaneous settlements for transactions. This helps eliminate the delays associated with traditional methods that can take days or even weeks.
  • Reduces operational costs. By eliminating intermediaries and automating processes, blockchain can significantly reduce operational costs for financial institutions.
  • Enables fractional ownership. Blockchain can be used to tokenize traditional assets like stocks and bonds, allowing for fractional ownership and increased liquidity. This can democratize access to financial markets for a wider range of investors.

Examples of Blockchain in Healthcare

These examples show that blockchain has already started to make a substantial impact on healthcare, and this is just the beginning:

  • BurstIQ: This firm is a leading provider of secure blockchain solutions for the healthcare industry. BurstIQ’s blockchain platform allows for confidential, individualized health profiles to be created for each patient, keeping their data secure while promoting interoperability and efficient health data exchange. 
  • Medicalchain: This UK-based start-up uses blockchain technology to securely store and share patient health records. By storing medical data on a blockchain, healthcare providers can access a patient’s complete medical history in real-time, resulting in more accurate diagnoses and better patient-centered care. 
  • Solve.Care: A platform that uses blockchain technology to simplify administration and payments in healthcare. It cuts down fraud and billing errors while providing a clear audit trail and improving patient outcomes. 
  • MedRec: A collaborative project between MIT and the Beth Israel Deaconess Medical Center, uses blockchain to manage permissions, compliance, and confidentiality of medical records. It provides a transparent view of a patient’s medical history, enabling better collaboration between different health providers. 

Benefits of Blockchain in Healthcare

The healthcare industry has been embracing blockchain for more than one good reason: 

  • Emphasizes patient-centered care. By securely identifying each patient, blockchain has to power to offer personalized treatment plans and improve patient-centered care.
  • Improved security. Blockchain’s encrypted, tamper-proof design takes care of the security of sensitive health data.
  • Seamless data exchange. Blockchain can simplify data exchange between different healthcare systems, improving interoperability and data accuracy.
  • Fosters transparency. Healthcare blockchain systems allow secure, verifiable, and transparent transaction logs, helping build trust between patients and providers.
  • Efficient drug traceability. Using blockchain, healthcare providers can trace every drug’s journey from manufacture to use, reducing counterfeiting and improving patient safety.

Examples of Blockchain In Government and Public Sector

Blockchain technology is increasingly being adopted by governments and public sectors across the globe. Here are some real-life examples that demonstrate its transformative potential: 

  • Estonia. Known as a global leader in digital governance, Estonia has been using blockchain technology to secure its citizens’ data across various sectors since 2012. The technology secures digital identities, health records, and legal documents, among other crucial public information.
  • Dubai: The city aims to become the world’s first blockchain-powered government. It’s implementing blockchain for diverse applications such as land registry, business registration, and tourism.
  • China: In China’s blockchain system, it helps public sector officials in various functions such as tax tracking, social security data management, and intellectual property rights protection.4
  • Sierra Leone: During its 2018 Presidential elections, Sierra Leone was the first country to use blockchain to verify voting results, paving the way for trust, transparency, and faster results in political processes.
  • Land Deed Registration in India: The Indian government is exploring blockchain for land registry systems. This can potentially streamline property transactions, reduce disputes arising from unclear ownership records, and improve transparency in land management.  By securely storing land ownership data on a blockchain, the government aims to prevent fraud and ensure efficient record-keeping. 

Benefits of Blockchain in Government and Public Sector

Blockchain technology promises tons of adventages poised to revolutionize the government and public sector, such as:

  • Transparency and accountability. As a public ledger, blockchain allows every transaction to be traced, viewed, and verified. This feature minimizes corruption and fraud, resulting in improved public trust.
  • Improved efficiency. The automation capabilities of blockchain can significantly reduce administrative time and cost. Governments can streamline processes such as tax collection, contract management, and benefit distribution.
  • Data security. Blockchain’s decentralized and encrypted nature makes it incredibly difficult for hackers to breach the system, thereby enhancing the protection of sensitive data.
  • Identity verification. With blockchain, governments can provide a secure digital identity to citizens, making public services more accessible and eliminating the risk of identity theft.
  • Vote integrity. Blockchain’s immutable attribute ensures that each vote in a democratic process is secured and cannot be altered dishonestly, maintaining the integrity of election results.

Examples of Blockchain Application in Media and Entertainment

Technological shifts have already transformed the way we consume media, and blockchain is pushing the envelope even further. Let’s walk you through some real-world applications: 

  • MyCelia, an innovative music platform created by Imogen Heap, is using blockchain to revolutionize the way artists sell their work. By integrating blockchain, MyCelia enables direct and instant payments to music creators, bypassing traditional intermediaries. This disruptive model ensures rightful royalties are paid, and artists have control over their intellectual property. 
  • Verdictum is using blockchain technology to combat film and video piracy. Its decentralized network of nodes makes it almost impossible for digital pirates to deliver pirated content. By providing a secure and immutable content registry, Verdictum significantly deters unauthorized distribution of original content. 
  • Voise, a blockchain startup, provides musicians with an avenue for fair income. By creating a decentralized music platform, Voise enables direct transactions between artists and listeners. This approach minimizes revenue leakage and assures artists get compensated fairly and transparently for their work. 

Benefits of Blockchain in Media and Entertainment

The advantages are far reaching and are set to revolutionize the way we interact with creative content: 

  • Intellectual property protection. Blockchain’s immutable and transparent nature helps in the creation of indisputable records of creative works, helping combat content piracy effectively.
  • Innovative monetization models. Blockchain provides artists with the ability to monetize their content through direct-to-consumer sales and smart-contracts, eliminating the need for intermediaries and ensuring fair compensation.
  • Transparent royalty distribution. Smart contracts on the blockchain network enable clear and transparent distribution of royalties to the rightful stakeholders.
  • Greater audience engagement. Blockchain introduces new ways to engage viewers and listeners, like micropayments, which allow consumers to purchase media in smaller quantities or pay-per-use.
  • Improved content discovery. Blockchain could provide a public, transparent ledger for content rights and ownership, making it easier for consumers to discover and access content.

Examples of Blockchain in Action: Key Takeaways

The blockhain technology is transforming industries worldwide. Although blockchain is still not getting the attention it deserves, given it’s benefits, it seems the revolution is just getting started, with more and more businesses investing in the technology daily. Don’t risk being left behind. 

Need help with blockchain adoption?

Let SnapStack assist you.

GET IN TOUCH
Read more on our blog

Discover similar posts

IoT In Healthcare

IoT in Healthcare: What It Is, How It's Used, Its Importance & Vulnerabilities

IoT in healthcare is already transforming the sector, and the future seems promising.  From wearable fitness trackers to sophisticated smart implants, applications of IoT are changing the way healthcare is delivered. Read on to explore the groundbreaking impact.

What is IoT in Healthcare? 

IoT in healthcare is a term that refers to a network of connected devices that collect and exchange data to improve patient outcomes. These IoT devices range from wearable health monitors and smart thermometers to advanced implantable devices and remote patient monitoring systems.

Why is IoT Important in Healthcare? 

IoT is soon to become an indispensable part of modern healthcare as it primarily focuses on improving the efficiency and quality of patient care. IoT devices in healthcare collect and transmit real-time health data to healthcare providers. This information can be used for a variety of purposes, from early diagnosis and personalized treatment plans to continuous monitoring of patient conditions minus the need for invasive procedures.  

For example, wearable medical devices within the IoT framework enable Remote Patient Monitoring (RPM). These devices can monitor patients for different medical conditions right from their homes, allowing for timely interventions when needed without frequent hospital visits. This is paramount for chronic disease management, postoperative care, and elderly patients. 

Backed by IoT devices, patients can recover at home under medical supervision via remote monitoring, significantly reducing hospital readmissions. In turn, This lowers healthcare costs and improves patient comfort and satisfaction. Since IoT also supports data collection, it can lead to better clinical decision-making and operational efficiency for healthcare organizations. It’s a win-win. 

What’s more, the integration of IoT with blockchain technology further improves security and privacy. Platforms like BurstIQ facilitate the sharing and usage of medical data securely. Using blockchain, healthcare providers can share sensitive information reliably and with ease. This helps them streamline operations while guaranteeing all involved parties have accurate and up-to-date data.

How Is IoT Used in Healthcare?

With more and more medical practitioners and hospitals adopting IoT, we are witnessing a new and improved healthcare system. How? Here are just some of the applications of IoT within the sector:

ApplicationDescription
Remote Patient MonitoringCollects real-time health data from wearables or sensors for remote monitoring of patients. This remote patient monitoring can be particularly useful for patients who may not have easy access to healthcare facilities, and it can even recommend treatments or generate alerts based on the information gathered. 
Smart Medical DevicesIoT-enabled devices aid in managing chronic conditions by automatically collecting and transmitting data. 
Asset Tracking and ManagementTracks the location and status of medical equipment to ensure availability and reduce search time.
Supply Chain ManagementMonitors inventory levels and tracks movement of medical supplies and pharmaceuticals.
Hospital Operations OptimizationOptimizes hospital operations such as patient flow and scheduling, and monitors environmental conditions.
TelemedicineIoT devices enable telemedicine services, allowing patients to consult with doctors remotely, which can be especially useful for patients who live in remote areas or have mobility problems. 
Patient Engagement and Behavior MonitoringEncourages patient engagement and monitors behavior patterns for personalized feedback.

Benefits of IoT in Healthcare 

  • Improved Patient Monitoring: Continuous tracking of vital signs and health metrics through wearables and smart devices provides real-time data, allowing for timely interventions and better disease management.
  • Remote Patient Care: IoT devices facilitate telemedicine and remote consultations, reducing the need for hospital visits and enabling healthcare access in underserved or rural areas.
  • Operational Efficiency: Automation of routine tasks, such as inventory management and patient flow tracking, improves operational workflows and reduces the administrative burden on healthcare professionals.
  • Personalized Treatment: Data collected from IoT devices can be analyzed to tailor treatments to individual needs, improving patient outcomes and satisfaction.
  • Cost Reduction: By preventing unnecessary hospital visits and optimizing resource usage, IoT technology helps to significantly cut down healthcare costs for providers and patients alike.
  • Data-Driven Insights: The wealth of data generated by IoT devices can be analyzed to uncover patterns and insights, leading to better decision-making and continuous improvement in healthcare delivery.
  • Improved Drug Management: IoT-enabled smart cabinets and inventory systems ensure the accurate tracking and automatic reordering of medications, reducing errors and enhancing patient safety.
  • Health and Wellness Promotion: IoT devices encourage patients to engage with their own health, using fitness trackers and health monitoring applications to promote a proactive approach to wellness.

IoT Vulnerabilities in Healthcare 

While IoT brings forth numerous benefits in healthcare, it also introduces significant vulnerabilities that we must address. One of the primary concerns involves the security of patient data. Connected medical devices often transmit sensitive information across networks, making them potential cyber-attack targets.

Additionally, many healthcare IoT devices do not feature robust security measures. This lack of security can encompass insufficient encryption, default passwords that users rarely change, and outdated software. Such weaknesses not only jeopardize patient data but can also threaten the functionality of critical medical devices.

Moreover, the complexity of interconnected systems can introduce vulnerabilities. The integration of multiple devices from different manufacturers into a single network can lead to inconsistencies in security protocols, creating gaps that attackers might exploit.

Addressing these vulnerabilities requires a multi-faceted approach: enforcing stringent security measures, regular updates and patches, and comprehensive training for healthcare professionals on best practices in IoT security.

IoT in Healthcare: Key Takeaways 

Healthcare providers should seize the opportunities presented by IoT and blockchain to transform patient care and operational processes. The journey toward adopting these technologies begins with a strategic approach to implementation and a commitment to continuous improvement. 


[ecta id='22']

Read More
applications of iot

Five Applications of IoT That Will Convince You Of Its Potential to Change the Way Business Is Done

Envision a world where devices around you interact with each other, exchange data, learn from patterns, and make smart decisions autonomously. You might think this scene belongs to a futuristic sci-fi movie, yet, what you're imagining is today's reality. we live in the Internet of Things (IoT) era, and the applications of IoT are far-reaching. This new technology has a transformative impact across industries adding value to businesses and lives. 

What Is IoT and Why Is It so Popular?

IoT is an advanced integration of computer-based systems, digital, and mechanical machines or objects, people, or animals using unique identifiers (UIDs). They can swiftly transfer data over a network without human intervention, either human-to-human or human-to-computer.

This technology is so impressive that, according to predictions, there will be 75.44 billion IoT devices by 2025. 

But why is it mushrooming in popularity?  

We could go into detail about how the IoT appreciation comes from its ability to enable real-time monitoring, empowering businesses to respond to live updates instantly. This results in efficient operations and improved decision-making. Moreover, the data acquired from IoT can unearth patterns and new insights, leading to innovation and better customer relationships. 

However, the simple answer is: IoT's popularity is due to its transformative power to turn basic devices into intelligent ones. The applications of IoT that we’re about to discuss are just proof of this. 

IoT in Security 

With its ability to connect devices and systems, IoT empowers security frameworks in unforeseen ways. From automated surveillance systems and biometric authentication to intelligent threat detection and response, IoT is recalibrating our understanding of security fundamentals. 

Consider a practical scenario — IoT lets you connect your home security system to your mobile device. Consequently, you receive instant alerts of any suspicious activity, regardless of your location worldwide. Coupled with AI-powered threat prediction systems, this creates an ironclad defensive network that recognizes and combats security threats like never before.

However, it's crucial to acknowledge that increased connectivity may bring potential vulnerability. If not properly supervised, the heightened network exposure could invite misuse, so cybersecurity measures become more critical than ever in an IoT-enabled world. 

IoT in Healthcare

IoT devices, such as wearable medical gadgets, remote patient monitoring systems, and smart hospital equipment, are transforming patient care. These IoT applications can continually monitor vital signs, sugar levels, and other critical health metrics, sharing this data over a secure blockchain network. For example, diabetes patients can manage their condition better using IoT devices, with the data securely stored and analyzed by healthcare providers for timely interventions.

One compelling example is the integration of IoT and blockchain for remote patient monitoring (RPM). Patients can send real-time health data directly to their clinicians using IoT-enabled wearables. Blockchain ensures data remains secure and tamper-proof, addressing significant data privacy and security concerns in the healthcare sector. Additionally, IoT in healthcare aids digital clinical trials, with blockchain securely and transparently recruiting and tracking participants, ensuring the integrity of the collected data.

IoT in Manufacturing 

The manufacturing sector is experiencing a revolution with the integration of IoT. By connecting machines, devices, and systems, IoT enables real-time monitoring, predictive maintenance, and enhanced operational efficiency. 

One notable application is predictive maintenance, where IoT sensors monitor machinery conditions and predict potential failures before they occur. This proactive approach minimizes downtime and extends equipment lifespan, ultimately saving costs. 

Smart factories are also leveraging IoT to create more efficient and flexible production processes. For example, connected devices can communicate seamlessly, allowing for quicker adjustments to production lines and reducing waste. This level of automation and precision leads to higher product quality and consistency. 

Moreover, IoT in manufacturing facilitates better supply chain management. Real-time data tracking ensures transparency and accountability, providing manufacturers with insights into inventory levels, shipment status, and production bottlenecks. This visibility empowers manufacturers to make informed decisions and respond swiftly to market demands. 

Companies like Siemens and General Electric are already implementing IoT solutions to optimize their manufacturing processes, setting a precedent for the industry.

IoT in Retail 

By embedding IoT sensors in retail locations, stores can track customer behavior, manage inventory in real time, and ensure seamless shopping experiences. Retailers can use smart shelves that automatically notify staff when stock is low or utilize smart mirrors that allow customers to virtually try on clothes, transforming the shopping experience. 

An example of this is Amazon Go stores, which use IoT to enable a checkout-free shopping experience. Shoppers simply walk out with their items, and sensors track what they've taken. The technology then charges their Amazon accounts accordingly, enhancing customer convenience and reducing the need for cashiers. 

Moreover, IoT enables personalized marketing by collecting and analyzing data on customer preferences and shopping habits. This data can be used to tailor offers and promotions in real time, improving customer engagement and satisfaction.

IoT in Customer Service 

Imagine a world where customer service is not just reactive but predictive. With the advent of IoT, this is closer to reality than ever. IoT devices can monitor product usage and performance in real time, providing valuable insights into potential issues before they become real problems.  

For instance, smart home devices like thermostats and appliances can send alerts when maintenance is required, significantly improving customer satisfaction. Companies nowadays rely on IoT to improve their customer service, offering preemptive support that keeps their customers happy and loyal. 

This means that businesses can transform customer service from a necessary cost center into a competitive differentiator, setting themselves apart in an increasingly crowded marketplace.

Applications of IoT: Key Takeaways

It’s clear that the applications of IoT extend far beyond what we once imagined possible. From security and healthcare to manufacturing, retail, and customer service, IoT is reshaping industries and enriching our day-to-day experiences. The era of smart, interconnected devices is not just a vision for the future, it’s happening right now. 

[ecta id='22']

Read More

Top Seven Machine Learning Applications in 2024

Robots have not yet taken over the world, despite what the sci-fi pop culture of the late 20th century taught us. While all the claims made have not come true, machine learning is now present in almost all spheres of society. In many different industries, computers and AI systems are becoming proficient in a wide range of tasks — the seven machine learning applications we covered in this article are just the tip of the iceberg. 

Top Seven Applications for Machine Learning

Among many applications, machine learning has proven beneficial in: 

Diagnosing Diseases

Finding and diagnosing diseases that are typically difficult to diagnose is one of the main applications of machine learning in healthcare. Typical examples include genetic diseases and a variety of cancers that are difficult to detect in their early stages.

For instance, the now-defunct IBM Watson Genomics project offered a very good example of how cognitive computing and genome-based tumor sequencing can result in a much quicker diagnosis. Similar to this, Berg, a well-known biopharmaceutical company, has already used machine learning to create treatments for a variety of conditions, including oncology.

The PreDicT program from P1Vital, which stands for Predicting Response to Depression Treatment, is another excellent illustration of machine learning applications in the healthcare industry.

Image Recognition

Image recognition is a common practice. Have you noticed the automatic scene and facial recognition feature in the gallery app on your smartphone? Machine learning was used to accomplish that. The same is true for social media functions like auto-friend tagging. 

Consider Facebook’s DeepFace technology, which makes recommendations for friends to be tagged in images. Modern secret surveillance systems used by some governments around the world rely on machine learning-assisted image recognition as well.

Machine learning-based image recognition has uses in the healthcare industry as well. Missing even a small detail during many treatment procedures could have disastrous effects. Image detection can be used in scans and X-ray images to find even the smallest differences between two points. This method is especially beneficial for precisely tracking the development of a virus infection or the spread of a tumor.

Autonomous Vehicles

Regardless of the circumstance, AI is anticipated to outperform a human driver in autonomous vehicles. Machine learning algorithms are useful in this situation as they enable autonomous vehicles to make decisions instantly.

The onboard computer of self-driving cars like the Tesla Model S or Ford F-150 uses machine learning to process data input from a variety of sensors. This is to guarantee that the ADAS can interpret the environment around the vehicle safely and accurately. This data stream is used by the system to regulate the direction and speed of the vehicle. The data is also processed for other crucial tasks like object detection and tracking, perception, and forecasting.

Detecting Online Fraud

Machine learning is becoming more and more effective at protecting our online transactions and spotting fraud. It works particularly well at spotting fraudulent activity involving the use of phishing, fake accounts, and IDs.

To suggest risk rules, machine learning algorithms are trained on historical data for fraud detection. These rules can be used to prevent users from taking specific actions that have been flagged as suspicious, such as unauthorized logins, potential identity theft, fraudulent transactions, and so forth.

Data scientists typically provide a massive amount of records of previous fraud and forgeries to the machine learning model. To minimize false positives, they also flag non-fraud cases. The rule suggestions are typically more accurate with more data to work with.

Product Recommendations

Prime examples of machine learning applications in business are product recommendations on e-commerce sites and entertainment platforms. The "recommender systems" that produce and distribute these recommendations use machine learning algorithms to divide up the customer base according to user information and behavioral trends. The browsing history, likes, shares, and other user actions are used to gather user information and behavioral patterns.

Intelligent Virtual Assistant (IVA)

IVAs are computer-based systems that use machine learning to comprehend natural language, or human language, and respond appropriately. Each question is presented with a multiple-choice selection of responses by these clever AI assistants. They can decipher user intent from the free text as well.

IVAs, also known as Virtual Customer Assistants, are being used more and more in automated customer support. This enables users to express to the machine even very specific concerns in the same way they would to a human.

IVAs should be understood to be distinct from chatbots. They are much more intelligent and able to comprehend spoken language. In contrast, the majority of chatbots engage users by providing straightforward yes/no response options.

Now that no-code products are more prevalent, you can create IVAs in as little as 15 minutes. 

Trading

The use of machine learning in trading stocks and cryptocurrencies is also expanding. The internal calculations and analyses are performed by sophisticated machine learning algorithms. The data produced aids traders in making wise choices.

More specifically, machine learning is useful for identifying signals in alternative and financial data. The development and backtesting of systematic strategies can then be done using these signals.

What Does the Future Hold for Machine Learning Applications?

Applications of machine learning are becoming prevalent in many facets of our society. Much more than what we talked about above, sentiment analysis, data collection and classification in cosmology, marine life studies, engineering, military intelligence, and even digital art are some additional common applications. 

Every day, as artificial intelligence expands, more technological advancements become possible. Given the importance and relevance of this technology, it makes sense for you to educate yourself about it — and make good use of ML for your businesses. 

[ecta id='15']

Read More

Contact

    Copyrights © 2023 Snapstack

    Scroll to Top