In the world of IT recruitment, we often come across two fundamental types of candidates: active and passive. This distinction isn’t just theoretical—it has a real impact on outreach strategies, the speed of the hiring process, and expectations on both sides. If companies fail to recognize this difference, they risk losing top talent, not just due to poor timing but also because of the wrong approach.
A passive candidate is someone who is not actively looking for a new job but remains open to new opportunities. They aren’t actively browsing job boards or applying to roles, but they might be interested if the right offer comes along.
In IT, this type of candidate is quite common—many professionals use networking or occasional job offers to "calibrate" their market value. According to LinkedIn Talent Trends, up to 70% of the global workforce falls into this category—not actively seeking, but willing to listen.
On the other end of the spectrum is the active candidate—someone who is actively searching for a job. They may have already resigned, be in their notice period, or have made the decision to leave soon. These candidates:
A Jobvite study shows that active candidates typically make a decision within 10–14 days of starting their job search. This means that companies with slow hiring processes or overly complex interviews risk losing top talent.
Companies that recognize the difference between passive and active candidates and tailor their approach accordingly will increase hiring success while also improving the candidate experience.
Every candidate is unique, and there is no one-size-fits-all approach. Today, recruitment is more about understanding people than just finding technical skills. The best recruiters know this and adjust their style based on the candidate’s situation.

Smarta kontrakt har blivit en hörnsten för säkerhet
Läs mer
I årtionden har läkemedelsindustrin varit inlåst i en obeveklig strävan efter nya läkemedel. Läkemedelsupptäckt är fortfarande en långsam och dyr process, plågad av låga framgångsgrader. Men AI inom läkemedel kan skriva en helt annan historia. Från att analysera stora datamängder för att identifiera lovande nya läkemedelsmål till att effektivisera kliniska prövningar, påskyndar AI upptäckten av livräddande behandlingar. Den här artikeln utforskar möjligheterna med AI inom läkemedel, diskuterar hur det kan hjälpa oss att vinna kampen mot sjukdomar och i slutändan ge bättre hälsoutfall för patienter runt om i världen.
Läs mer